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Abstract 

The feasibility of the macroparticle simulation of stochastic (momentum) cooling is 
discussed. A computationally effective algorithm for simulating the particle dynamics 
is proposed. The scaling laws for the number of particles and cooling system bandwidth 
are numerically checked. Results of simulation of the momentum stacking in a simplified 
model are presented, indicating that reproducing 3 orders of magnitude in the density 
variation is easily achievable. 

1 Introduction. 

The performance of the p accumulating rings is usually simulated by numerically solving the 
Fokker-Planck (FP) equation for the momentum cooling /l/. This approach however can 
not be easily extended to account for many real-life complications, particularly the two-way 
transverse-longitudinal coupling due to the finite betatron size at the pickup. Indeed, the 
computational complexity of the Fokker-Planck solvers grows with the dimensionality of 
the space p as NP (N being the number of points on the grid), so going from p = 1 to 
p = 2 in the situation when the code for p = 1 case is already quite slow /2/, would most 
likely be not feasible. An alternative approach that seems more promising was suggested 
by V.Visnjic /3/ and can be described as the macroparticle simulation using the discrete 
particles and the time-domain response functions of the pickup-kicker (PICK) circuits. Since 
it is not possible to use the realistic number ofp that is about lo”, one needs an appropriate 
scaling law to extrapolate from the results with a smaller number of particles. In this note, 
we present such a scaling law for an idealized momentum-cooling system (without coupling 
to transverse dynamics). In addition, another useful scaling law that allows to change 
the bandwidth is derived. An efficient macroparticle time dynamics algorithm is obtained, 
and some preliminary results of simulation are presented. The feasibility of macroparticle 
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simulation is established by numerically testing the scaling laws. The full coupled simulation 
was not attempted yet and this remains to be done in the future. 

2 Theory and algorithms. 

2.1 Scaling laws for the Fokker-Planck model. 

We base our discussion on the theoretical derivation of Ref./4/ (BL). The Fokker-Planck 
model of the evolution of momentum distribution function ‘I’(z,t) (with 2: for momentum 
deviation from the reference particle z = E - Eo and t for time) is given by (BL50) as: 

m -=-- at at [F(W - D(+] 
where the “damping” F(z, t) and “diffusion” D(z, t) are: 

F(z,t) = c Gl(z) , Q(~,t) 

where W(Z) is the revolution frequency dependence on momentum, Gl and 61 are respectively 
the gain and the signal suppression factor at harmonic I of the revolution frequency. The 
latter quantity is defined by: 

qrl(z>t) = 1-t i J,-, drl 
G+,r,h)v 

II f qW(x) - 4x1)) 
where N is the total number of particles. The distribution function rk(z, t) is normalized 
Jdx @(z, t) = 1. The diffusion intensity Dfh(cc) is caused by the thermal noise in the 
pick-ups and the electronic circuits and is given by: 

where P(n) is the noise power density. The gain harmonics G,(s) are defined as G(lw(s), z) 
of the general gain function G(R, z). In the expression (4), the Palmer cooling technique is 
implied, since the gain G stands under the integration /4/. 

The crucial issue for the possibility of the macroparticle simulation is the existence of the 
scaling laws for the Fokker-Planck equation (1) that would allow to reduce the total number 
of particles N. It is resolved positively by identifying the (scaling law) transformation: 



G;(r) = kGl(z) 

P/(z) = k4(2) (‘3) 

1’ = 
t 
rc 

that leaves the FPE (1) invariant. It should be noted that the flux J = FII, - 0% is in- 
variant under the transformation (6) together with the “screening factors” 61. The meaning 
of the transformation (6) in terms of the cooling rate is that by decreasing (increasing) the 
number of particles by a factor k and simultaneous increasing (decreasing) of the gain by 
the same factor, the cooling rate is increased by the factor k. Notice here that the FPE 
invariance is a stronger property then the cooling time invariance, since the latter may 
change as the cooling progresses while bhe former can not. 

The transformation (6) allows us to reduce the number of particles for simulation pur- 
poses to what is numerically practical. It is important to realize however that this is only 
true when one extra condition is met: the number of pnrtirles withiu a, “sample” has to be 
large, i.e.: 

&+l (7) 

where W is the bandwidth of the cooling system and T is the revolution frequency. Indeed, 
the condition (7) guarantees the wide separation of the coherent and incoherent (cooling) 
time scales that justifies the truncation of the BBGKY hierarchy in order to derive the FPE 
141. 

The necessity to satisfy the condition (7) makes one to look for some other scaling laws 
that would allow to reduce the bandwidth and push down the number of particles still 
further. Indeed, in the example of the Fermilab Accumulator Ring the bandwidth of the 
momentum stacking system extends up to w 4500 revolution frequencies, so one would still 
need about 20000- 100000 particles to satisfy the condition (7). That can be too many for 
practical application, as we show in the next sec,tion. 

The transformation of the required type that we propose to use is: 

G;(z) = GRI(~) 

u’(z) = wo f R(w(r) -IA,) 

P/(z) = !y 

(8) 

1’ = Rf 

where wo is the revolution frequency of the reference particle wg = u(O), while the index RI 
is understood as the integer part [Rl]. The transformation (8) is defined for any positive 
R both larger and smaller than unity. Unlike the situation with the transformation (6), 
the FPE will be invariant under the “bandwidth transformation” (8) only approximately 
and only when both the original and the transformed bandwidths are large, WT > 1, 
WT/R >> 1. Indeed, one can easily see that the signal suppression factors are transformed 
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as 4 = CR,. Moreover, if the gain harmonics GI c,hange slowly, as a function of I, from 
Intin N 0.5WT t0 Ima* N WT, the summation over I in the formulas (2) and (3) for the 
damping and diffusion intensities can be substituted by integration, producing: 

p(,)=++~+ 
( C-RI (9) 

and similarly D’(z) = D(z)/R. When R > 1, the transformation (8) reduces the bandwidth 
and the cooling slows down proportionately. Notice that the flux J is transformed as 
J’ = J/R 

Finally, one more transformation that rescales the gain without a change in the number 
of particles is: 

G;(z) = klG,(z) 

d(r) = w. + k,(w(R.)- tia) (10) 
P/(z) = LIP,(T) 

1’ = ; 
‘1 

The flux J for this transformation scales as J’ = kl J. 
The three transformations (6), (8) and (10) allow to adjust independently three parame- 

ters, e.g. gain strength, bandwidth and frequency spread. All three transformations should 
be implemented to increase the speed of the macroparticle simulation, as is discussed in the 
following sections. 

2.2 Dynamics with cooling: efficient algorithms. 

The longitudinal equations of motion ill a ring with one PU and one K can be defined as : 

i; zr -T&(tli - 6h’) 

ei = W(Zi) (11) 

i = CR(q) &n(Bi - 0’“) + 
/ 

- dT F(T)q(t - 7) 
0 

where zi is the relative energy of the i-th particle Zi = Ei - E”, 8; is the azimuthal 
coordinate, and O”,Bp” are the azimuthal locations of respectively the PU and the K. The 
quantity q(t) is the voltage at the kicker as a function of time, the function H(z) describes 
the position sensitivity of the PU in the Palmer cooling method /4/, and the retarding 
kernel F(7) accounts for the net effect of amplifiers and filters. The time-domain dynamics 
(11) can be related to the more conventional frequency-domain calculations /4/ by using 
the fast-time (unperturbed) oscillations 6’i = Bio + W(Zi)t, yielding: 
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Figure 1: Typical time dependence of the Green function G(t, 2) (lightcurve). Heavy curve 
is an “idealized” dependence that is used in the simulation code. Upper and lower “humps” 
on the dashed curve are parabolic. 

where F,(w) is the Fourier image of F(r). The gain G(R, z) is then: 

G(R z) = 

H(z)e’(8v*) 
Q2 _ Fw(fl) 

and G,(z) = G(lw(s),z). The form (13) can describe both the Palmer cooling when the 
denominator is nonzero at R = Iwe while H(0) = 0 and the filter cooling, when H(0) # 0 
and l&o” = F,(~q,). 

In time domain, the dynamical solution of the equation for p (11) can be presented as : 

p(t) = 5 c qt - &, ii) (14) 
k=l i 

where i is the particle number, ii is the moment of crossing the PU number k (counted from 
moment t backwards), and ii is the momentum z; at that crossing. The Green function 
C?(t, CC) is the Fourier transform of the gain G(R, z). 

The typical time dependence of the Green function G(2, z) is shown in Fig.1. 
The Green function G(t,z) is zero for T < rd, where rd is the PU-K delay time. The 

width of the impulse AT = r,,, - rd is determined by the bandwidth W = 2n/Ar. Though 
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for any real filter the ‘tail” of the Green function is nonzero at t > ~~~~~ for the purpose of 
our macroparticle simulation we will consider an approximation of zero G(z, t) for 1 > r,,,,,, 
substituting thus the real Green function by the one with the “tail cut-off”, as shown in 
Fig.1. This approximation allows one to have only a finite (and relatively small) number of 
particles that have crossed the PU to contribute to the K voltage at any given moment of 
time. More specifically, there will be only about N, N NAT/T particles at their latest PU 
crossing moments of time c = ? that contribute to the sum (14). 

Consider now the ways of casting the dynamics (11) in the form of mappings, with time 
advancing in discrete steps. A natural way of doing that would be to choose the discrete 
moments of time of the mapping to correspond to the successive crossings of the K by the 
particles. The (varying) time step therefore will be of the order T/N, and each particle 
receives a phase advance, though only one experiences the kick at the K. The number of 
computations per revolution therefore will be of the order of N’. This is a rather inefficient 
algorithm, and one would like to do better than that. 

A more efficient algorithm can be constructed by devising a mapping in time steps of 
the order of the revolution period. More precisely, we suggest to take the time step equal 
to the minimal time-of-flight between the K and the PU. It can be estimated by taking the 
minimal (or maximal, if the sign of the momentum compaction factor (Y is negative) energy 
of the particles in the beam s,in, so that r,, = (~9~ - BPU)/w,in, w,;~ = w(z,~,). Within 
that time step, the moments of time ii and respective momenta zi of the particle arrival at 
the PU can be found from the initial phases and momenta (at the beginning of the time 
step) without the knowledge of the K voltage q(l). That information, together with the 
same arrays stored in memory from the previous time step, directly defines the K voltage 
through the summation (14) at any given moment of time within the step. The general 
mapping for each particle from t, to t,+l = t, t TO would consist then of the following 
stages: 

1) Check if the particle crosses the PU. Compute and record crossing coordinates ? 
if yes. 
2) For each particle, check if it crosses the K within the time step. If not, ap- 
ply “unperturbed” mapping, without a kick. Compute the K crossing time ? if 
yes. Compute the K voltage q(i’) by using 2 and !? from this and previous step. 
Implement the kick and the unperturbed mapping from ii to &+I. 

Most of the computational resources in this algorithm are expended on the computations 
of the voltage q(?), since each of these involves the summation over N, particles in the 
sample. In order to identify these particles, we suggest to order the array of particle 
phases 8(i) = 8; once per time step and store the resulting array e(i). Since the revolution 
frequency spread is small, the relative ordering will not change much within a time step. 
That allows to single out the contributing particles by using the approximate homogeneous 
distribution in phases: $ii) x 2~i/N. Indeed, the time coordinates of the PU crossing of 
the sample are t,in = t’ - r,,, and t,,, = t’ - rd. The azimuthal boundaries of the 
sample at t = t, can be found then, in case of t,in > t,, as &in = Op” - ~,,,(t,,, - t,), 
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e - 0” - Wmin(Gnin - tn) (here ~minr~mrrz mllz - are the smallest and the largest revolution 
frequencies in the beam). The particles in the sample are approximately those with i 
between inin = Bmi,N/2r and i,., = B,., N/2rr. In practice, the sample has to be taken 
somewhat wider because of the statistical fluctuations in the particle positions. In case of 
t,in < t, one can similarly find the coordinates of the sample at the previous mapping step 
1,-l and use arrays 8,~ from the previous step to compute the voltage q. 

The computational efficiency of this algorithm is about N/N, = l/WT times better then 
that of the previous one. The time step depends on the K to P distance but is always of the 
order of the revolution period. The ordering procedure requires - N In N operations per 
time step, but since there are N N.,N operations to compute the voltage q(t), the ordering 
does not significantly increase the total number of operations if N, < In N. The estimate 
of the number of operations per revolution is * N,N. 

One can deduce now the computational benefit of the number of particles and bandwidth 
scaling transformations (6), (8) and (10). Th e relevant indicator is the number of operations 
Ncomp per cooling time rC - TN,/G /I/, estimated thus as Ncomp - NN,r,. The number-of- 
particles transformation (6) scales N and N, as N’ = N/k, Ni = N,/k, while the bandwidth 
transformation (8) scales N, only as N: = NR. The frequency- spread transformation 
(10) scales the cooling time as 7: = rJk1. As a result, the number of operations per 
cooling time scales as NLoml, = R2Ncomp /klk3. Since the parameter kl can not be increased 
significantly because of the Schottky band overlap condition, and also due to the condition 
(7) of the large number of particles per sample N,R/k > 1, the best strategy to reduce the 
number of operations is to increase k (reduce the number of particles) while increasing R 
(reducing the bandwidth) to stay within the limits of that restriction. The only limitation 
to such procedure comes from a particular setup of our numerical algorithm that requires 
the sample to be much shorter than the circumference of the ring. One can expect thereby 
to be able to simulate an arbitrary number of particles, by as few as about a few thousand 
“macroparticles”. 

2.3 Schottky spectra. 

One of the most important diagnostic tools in the real experimental environment are the 
Schottky signal monitors /1,5/. In order to be able to compare the simulation data with the 
experimental one, one needs to calculate the Schottky spectra in simulataion. The Schottky 
spectrum S(w) can be calculated by using the definition: 

S(w) = Tliiw LT. dt e’“‘H’(t) 

where the auto-correlation function h’(r) is defined as: 

Tk 
dt I(t)l(t t T) (16) 
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The PU current Z(t) is the sum of the &functional impulses from each particle traversing 
the PU at e = 0: 

z(t) = ~44wv$)) (17) 

where 6(e) is the 2x-periodic delta-function and we assumed a momentum-insensitive PU. In 
simulation, the integrations in the formulas (15) and (16) are done in the finite ranges T. and 
Tk. Within given computational resourses, the ratio N/TI. and para,rneters Tk, T, have to 
be chosen optimally in order to minimize the fluctuations of the Schottky spectra. Consider 
the no-cooling case, when the energies of the particles do not change, The (fluctuating) 
power spectrum S(w) can be presented as: 

S(w) = &CC Cfmfn eq (i(dio t ~~@jo))6,/rk(m4 t wj)&/*,(w - TLUj) (18) 
i,j nl n 

where w; = w(xi) and the small deviations of wi factor in front of 6 functions were neglected 
by using wi = we. The quantities f,,, are the Fourier expansion coefficients of the periodic 
finite-width impulse from each particle V+(t) = f(qt + 6’;o) = C,, fn,eim(w;t+8i0). The 
width of f(0) is determined by the Schottky PU-analyzer bandwith. That bandwidth 
w,,,~~ = Mwu defines the ma~ximal index M at which the summation in the expression 
(17) is effectively cut off. The function Jr,, is the finite-width approximat,ion of the delta 
fUnction s(w) = limT,, d,p(w) that is defined by: 

exp(iwT) - 1 
b/T(W) = iw 

The power spectrum 3 is the fluctuating quantity that depends on the random variables 
e re...B,ve, wr...w~. The average spectrum ,S(w) over that ensemble, with a homogeneous 
distribution of &o’s and distribution p(w) of i~i’s can be evaluated from the expression (1S) 
to be: 

S(w) = N*fc?&~;,,b) + NTw: 1 If,n12L(~) 
mf0 

where 6’ I,T(w) = Re(6,p(w)) and the function Z,n(w) is defined by: 

(‘JO) 

z,,,(W)= /~l&')d;,T~(w- mwl) (21) 

The function Z,(w) equals to $p(E) when the integration time T, is large enough T, > & 
and the frequency w lies within a nonoverlapped Schottky band Iw - mwuI w r&w, r&w K 
wu. Thus, the Schottky bands of the measured spectrum provide a direct observation of the 
frequency distribution p(w). 

Consider now the fluctuations of the power spectrum s(u), described by the r.m.s. 
value: 

P(w) = ((,S(w) - S(cd,,‘) (221 
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where the average is over the varibles 8lo...B~~ and w~~...wNo. Substituting expressions (18) 
and (20) and carrying out the averages over B~o...~J.Jo leaves the summation over only two 
indices m, n and i, j as the cross terms are averaged out. After some bulky manipulations 
and splitting the summation into the diagonal i = j and nondiagonal i # j parts one arrives 
to: 

P(w) = w,lm~on~olfmn12 p: (J hl P(WIYl/Ts.(‘,’ - -1)&/T& - w) 
-Ln(~Vn(~)) + N(N - 1) /~lh+l)P(w2) 161,T,(-Jl+ nwzf 
61/Ts(w - mwl) ('%,T& +d) t b/T,(W t 'd)] (23) 

One can notice now that the terms with m # n are suppressed by the factors wo/Tk, wo/Ts 
that come from nonzero-argument functions 6,jT,, QT,. Leaving only the leading terms, 
one obtains: 

P(w) = uim~oifIJm/4 hTi (jdwl dud (61,Ta(w - mwlf - 1:(w)) + 

b/T,bJ - Wl) b/T”@ - WI] (24) 

Using the conditions Tk >> ~/SW, T, >> l/6 w, one can calculate the integrals in (24) as 
the convolutions with J-functions if the frequency w lies within a nonoverlapped Schottky 
band, Iw - mu01 N mJw, mdw & wg. The relative amplitude of the fluctuations AS’$(w) = 
P(w)/S’(w) presents itself then as: 

AS;(w) = mTs T8 
Ndwlm) ’ Tk 

(25) 

where again only the leading terms were retained. The result (25) indicates that in order 
to minimize fluctuations of the measured Schottky spectra, one should always choose the 
parameter T, at the minimal level that is still compatible with the requirement to resolve 
the m-th Schottky band: T, >> l/m&. The averaging time Tk on the other hand should 
be chosen so as to make the two terms in (25) about equal: Tk +- N/n&. 

3 Simulation code and preliminary results. 

The code that implements the algorithm of the preceding section was written in Fortran. A 
number of diagnostic tools were built into it, with the outputs in the graphic form. In the 
code, the integration in the correlation function (16) was carried out by dividing the time 
in the current dependence I(t) into steps of the duration St = T/N and “spreading out”the 
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33.4s 

K(t) 
33.40 

Figure 2: An example of the correlation function K(T) for number of particles N = 1000, 
time step of the mapping ro = ,765, nonlinearity X = .05. Schottky computation parameters 
are T, = 50, T, = 5ooorCJ, n, = 30. 

delta-functional current impulses from each particle over R, steps. The units of time are 
normalized so that T = 1. The cooling system is characterized by the gain 9 and the impulse 
width AT (inverse of the maximum passband frequency) as shown in Fig.1. In order to avoid 
the complications of the “bad mixing”, the section of the ring between the pickup and the 
kicker was considered to be isochronous, i.e. the parameter X there was set to zero. The 
delay rd was matched so that the particle received the self-induced impulse at the kicker at 
the maximum of the first “hump” in Fig.1. The particles are distributed in momentum I 
initially in a Gaussian distribution with a unit r.m.s. size v, while the revolution frequency 
depends on z as w = 1 + Xz. An example-of the output of the correlation function K(r) 
and the corresponding Schottky spectrum S(w) for the case of no cooling is given in Figs.2 
and 3. 

An example of the cooling dynamics with parameters: number of particles N = 1000, 
impulse width AT = .05, gain 9 = .0002 is shown in Figs.4,5,6 and 7. In Fig.4, the 
r.m.s. momentum spread a(t) is shown as a function of time t, measured in number of 
time steps. The time step of the mapping in this case is ro = .5. By the end of the 
cooling period Tk = 100OO~o the momentum spread 0 is diminished by about 5 times. 
That large decrease indicates that the gain 9 is much smaller than it’s optimal value (that 
would provide the fastest cooling). Indeed, for the optimal gain the “suppression factors” 61 
equal to 2. /1,4/ for each band I, so that the momentum spread is not far from the critical 
value of instability threshold and no big decrase in momentunm spread without crossing 
the threshold is possible. In Fig.5, the time series of the momentum density profile are 
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Figure 3: Power spectrum S(U) for the case of Fig.2 

presented. Ten equidistant in time snapshots (labelled sequentially) along the duration of 
the process are presented. The narrowing of the profiles together with a change of their 
shape (from Gaussian to triangle-like with practically no “tails”) in the course of cooling 
is clearly visible. In Fig.6 we present the same time series of the Schottky spectra S(w) 
averaged over the time between the neighbouring “snapshots”. Again, the rise of the peaks 
because of the decrease of the momentum spread is clearly visible. In Fig.7, an averaged 
Schottky spectrum, with Th equal to the total simulation time 10000~ is presented. This 
Schottky spectrum is the average of the time series of Fig.6. 

Two control runs to test the validity of the scaling laws (6) and (8) were made. First, 
the particle number scaling (6) was tested by simulating the example with 2.5 -times less 
particles (N = 400) and 2.5 -times higher gain (g = .0005) than in the example of Fig.4, all 
other parameters being the same. When the run time Tk was set at 2.5 times smaller value 
Tk = 4OOOro, the curve of the momentum spread versus time u(t) was undistinguishable 
from the one in Fig.4. The validity of the scaling law (6) tested out thereby perfectly well. 

The second test was directed toward the “bandwidth” transformation (8). The impulse 
width AT and the nonlinearity X were both reduced from the example of Fig.4 by 2.5 times 
to the values AT = .04, X = .02, while the gain g was increased by a factor 2.5 to the value 
g = .0005. When the run time Tk was set at 2.5 times smaller value than in the example 
of Fig.4, the curve of the momentum spread versus time o(t) was within a few percent 
deviation from the curve of Fig.4. The validity of the scaling law (8) tested out thereby as 
well as one could expect it to. 

It should be noted here that since the momentum spread is cooled so much over the run of 
Fig.4, the test of scaling by comparing the curves a(t) with that of Fig.4 is very convincing, 
as the cooling rates for different momentum spread values are compared simultaneously. 
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Figure 4: Momentum spread 0 as a function of time 2. Cooling system parameters are 
Ar = .05, gain g = .0002, number of particles N = 1000, nonlinearity X = .05. 

4 Momentum stacking. 

The scaling laws of Section 1 can be implemented to simulate the momentum stacking of 
antiprotons. Consider the example of Fermilab Accumulator with the parameters: 

AN = 7. 10’ (number of particles per injection) 

A1 = 2.4.~~ (injection period) 

fo = 0.6 MHz (revolution frequency) 

f mllz = 2GHz, fmin = IGHz (maximum and minimum frequencies 
of the stack-tail system passband) 

Af = 135Hz (revolution frequency spread of the stack) 

t - 40Hrs (maximum stacking time) VnOl - 
All three transformations (6), (8) and (10) have to be used in order to maximally reduce 

the number of particles and speed up the simulation. The limiting factors in this approach 
are the implicit assumptions in the derivation of the FPE (1). The first of these is the 
many-particle-per-sample” condition (7).The second one is the absence of the Schottky- 
band overlap in the resealed system: 

fL Af’ < 1 -- 
fo fo (26) 
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Figure 5: Momentum density profile evolution series for the case of Fig.4. Horizontal axis 
is momentum z; snapshots are lab&d by the time step number. 
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Figure 6: Power spectra evolution series for the case of Fig.4. Horizontal axis the frequency 
w; snapshots are labelled by the time step number. 
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Figure 7: Average Schottky spectrum for the case of Fig.4. 

Of all three transformations, only the transformation (10) changes the ratio j,$,,,Af’/fi. 
Consequently, for the case of Fermilab Accumulator, where that ratio is already close to 
unity, the scaling parameter kl in the transformation (10) can not be made larger than 
unity. 

The third condition for the applicability of the FPE is the smallness of the “decoherence 
time” rd = l/Au, relative to the “cooling time” r, = u/F(z): 

where o, is the e-folding distance (in momentum) of the gain profile, q is the momentum 
compaction factor 1) = (6f/f)/(6p/p), Eo is the injection momentum and F(z) is the 
“cooling force” (3). The condition (27) 1s most restrictive near the injection energy since 
the “cooling force” is maximal in that region. The maximum scaling constant Ic in the 
scaling transformation (6) is limited by the condition (27). 

The transformations (8) and (10) are applied now by choosing the scaling parameters 
ICI and R so as to increase the revolution frequency spread Af and decrease the bandwidth 
w = fmaz- f,,,i,, to numerically convenient values. We choose the new maximum frequency 
jAm, from the condition &,, /fo = W/Rjo = 10. The parameter R is found then to be 
R = 330. The parameter ICI is chosen on the basis of a preference for a new injection current 
J’ = AN’/At’ of the magnitude: 

AN kl 
J’ = foAt R 

-- = O.l(particles/turn) 
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This value is deemed optimal in order to have a suitably long tracking time T,, e 5000 - 
20000 turns that would accomodate about 2.5 orders of magnitude of density variation over 
the stack tail. The parameter kl is found then to be k1 = .6 and the resealed frequency 
spread becomes Af’/fo = RklAf/fo = 0.05. 

The transformation (6) is applied by increasing the gain while keeping both parameters 
AN, At and therefore the injection flux constant. That speeds up the evolution of the 
distribution function p’(z, t) = p(z, kt)/k (h ere the distribution p is not normalized p = 
@ N(t), J pdz = N(t)). The limiting factor to increasing the gain is the condition (27). 

For the purpose of the proof-of-principle simulation a simplified model of the stack- 
ing system is used, with the purely exponential “pickup sensitivity” dependence H(z) = 
HO exp(z/u,) in the range of the dimensionless momentum variable from z = 0 (injection) 
to z = -10. For values of I smaller than -10. the sensitivity is a linear function of mo- 
mentum: H = HO(Z - ze)/(-10. - zc)exp(-10./u,) (zC is less than -10). That region 
models the core system, and the core location z = I, is defined by the condition H(z) = 0. 
The Green function time dependence G(t) is shown in Fig.8. Notice that the integral of the 
Green function over time has to be zero, since the gain is zero at zero frequency. 

Two examples of stacking simulation results are shown in Figs.8 and 9. The width 
AT of the Green function impulses is AT = 0.05, which approximately corresponds to 
the maximum passband frequency fmaz/fo = 10. Other parameters are: frequency spread 
Af/fo = 0.05, core position zC = -10.2, pickup sensitivity e-folding distance o, = 2.1, 
injection period At = 20 (turns), injection number of particles AN = 2. The plotted 
graphs are ten successive (equidistant in time) profiles of the base 10 logarithm of the 
density distribution. In order to improve the statistics of the density representation, each 
histogram comprises alI particles at all time steps within the one-tenth of the total tracking 
time. 

One can see that in the exponential region of the pickup sensitivity H(s) = Ho exp(z/uz) 
the profiles approach the stationary disribution X’ N exp(-z/a,) in accordance with an 
analytical solution of the FPE that is allowed in this region /l/. Overall, the profiles 
qualitatively resemble the ones that were obtained for the Accumulator by means of the 
Van der Meer simulation code, based on the FPE (see, e.g./l/), with about 2 orders of 
magnitude of density variations in the “tail” part and about one order of magnitude still 
more in the density variation in the “core” region. The most important conclusion overall 
is that we are able to reproduce 3 orders of magnitude of the dynamic range of variation of 
density. 

An illustration of the distortions in the density profiles that start emerging when the 
gain is pushed too high is given in Fig.9. All parameters are the same as in the case of 
Fig.8, except for the twice larger gain Ho = 0.2 and twice shorter tracking time T,, = 12000 
(turns) (so that the profiles should stay invariant if all restrictions (7), (26) and (27) are 
satisfied). One can notice some differences in the profiles of density even in the region not 
so close to the injection. 
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Figure 8: 10 Equidistant (in time) logarithmic density r$ = log,,p profiles. Tracking time 
T,, = 24000 (turns). Gain strength is defined by Ho = 0.1. 
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Figure 9: 10 Equidistant (in time) logarithmic density 4 = log,,p profdes for the parameters 
of Fig.8, but with a twice higher gain. Tracking time T,, = 12000 (turns). Gain strength is 
defined by Ho = 0.2. 
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